Home
dxdydz
Cancel

Welcome to my blog, a place for mathematics, physics, programming, and more!

Recent Posts:

AMM12206

Problem - S. Stewart (Australia) Prove [\sum_{n=1}^\infty\frac{\bar{H}_{2n}}{n^2}=\frac{3\zeta(3)}{4}] where [\bar{H}n=\sum{k=1}^n\frac{(-1)^{k-1}}{k}] is the nth skew-harmonic number. Soluti...

AMM12199

Problem - S. Sharma (India) Show that [\int_0^\infty\frac{x\sinh(x)}{3+4\sinh^2(x)}\,\mathrm dx=\frac{\pi^2}{24}.] Solution Call the integral in question $I$. Let $x\mapsto \ln(x)$, so that $\m...

Fun with Elliptic Curves

Elliptic curves are a serious topic of study in pure mathematics, they are at the forefront of modern research in number theory, and they have been used to great effect in cryptographic systems. B...

AMM12194

Problem - M. Tetiva (Romania) Evaluate [\sum_{n=1}^\infty\left(H_n-\ln(n)-\gamma-\frac{1}{2n}\right)] where $H_n=\sum_{k=1}^n\frac{1}{k}$ and $\gamma$ is the Euler-Mascheroni constant. Solution...

AMM12184

Problem - P. Perfetti (Italy) Prove [\int_1^\infty\frac{\ln\left(x^4-2x^2+2\right)}{x\sqrt{x^2-1}}\,\mathrm dx=\pi\ln(2+\sqrt{2}).] Solution Call the stated integral $I$ and let $x=\sqrt{u+1}$,...

AMM12181

Problem - G. Apostolopoulos (Greece) Prove [\sum_{k=2}^\infty\frac{1}{k}\int_0^1\left{\frac{1}{\sqrt[k]{x}}\right}\,\mathrm dx=\gamma] where $\gamma$ is the Euler-Mascheroni constant. Solution ...

AMM12145

Problem - T. Amdberhan and V. Moll (USA) Show that [\int_0^\infty\frac{\cos(x)\sin\left(\sqrt{1+x^2}\right)}{\sqrt{1+x^2}}\,\mathrm dx=\frac{\pi}{4}.] Solution Call the integral in question $I$...

AMM11989

Problem - S. P. Adriopoulos (Greece) Let $x$ be a real number between $0$ and $1$. Prove [\prod_{n=1}^\infty(1-x^n)\geq\text{exp}\left(\frac{1}{2}-\frac{1}{2(1-x)^2}\right).] Solution Call thes...

AMM11966

Problem - C. I. Valean (Romania) Prove that [\int_0^1\frac{x\ln(1+x)}{1+x^2}\,\mathrm dx=\frac{\pi^2}{96}+\frac{\ln^2(2)}{8}.] Solution First we define a new function called $I(\alpha)$ as $\d...

A Product of Derivatives

Problem Find all $n\in\mathbb{N}$ such that [f(x)=\prod_{k=1}^nf^{(k)}(x)] has a real solution of the form $f(x)=ax^r$ with $a\neq0$. Solution We show that such an $f$ exists if $n\neq1$ or $n...